麦瑟尼男装什么价位
① 哪一些数学理论开始看上去没有用,但后来在其他的领域发挥重要作用
狄沙格是法国数学学家,引入射影几何学的主要概念。 他运孝穗是黎赛留枢机主教和法国政府的技术顾问。根据笛卡 儿传记的作者巴耶所述,狄沙格在1628年和笛卡儿相 识 。他早年的事绩极少人知,约1630年他成为一个数学组 织的成员。他在<论透视截面>(1636)中提出了两个三角 形透视的定理,但并未受到同代人的重视。他最重要的 着作<试论锥面与平面相截的结果的初稿>(1639)对把射 影几何学应用到圆锥截面理论上做了很大胆的创新,这 对他的追随者帕斯卡有了重要的影响。但他在这部作品 中独特得用植物学名词做数学术语,不用笛卡儿符号, 致使该书两百年无人问津。除了他的朋友麦瑟尼,慎迟笛卡 儿,帕斯卡,费马以外,他的同僚都称他为狂人。甚至 在笛卡儿得知其提出处理锥线的新方法时,也曾写信给 麦瑟尼说他不相信一个人可以不借助代数方法去处理圆锥曲面,但在看过狄沙格的论文之后,也对他推崇有加,费旁卜马认为狄沙格才是锥线理论的创始人, 从他作品中见到宗庙之美,但一般人无法了解,因而有了嫌厌之心,狄沙格也只好归隐于自己的老家。1845年发现他的手稿由于对于射影几何学的兴趣正在复苏,他的贡献的重要性才为人所认定。
② 17世纪前后数学发展中的重大事件
17世纪前后,世界着名的数学家有:开普勒,笛卡儿,费尔马,牛顿,莱布尼茨,欧拉等.期间最重要的事莫过于<微积分>的产生了.
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维盯物尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数凯孝液学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学慎岩。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
③ 有关数学的历史问题
巴 斯 卡(Blaise Pasacl)
出生年代: 1623~1662
国籍: 法国
着作: 算术的三角形
发明了一 部计算机
生平: 巴斯卡,法国数学学家,物理学家,笃信宗教的哲学家, 散文大师,近代概率论的奠基者。他出生于法国的 Clermont,从童年到短暂的生命结束为止,都体弱不堪,他的父亲曾在他 15岁或16岁前企图禁止他念数学。但巴斯卡在12岁时硬要知道几何的真正面目, 就以所得的资料为基楚,开始自我摸索。17 岁时写成了数学成就很高的圆锥截线论这是他研究狄沙格的关于射影几何的经典工作的结果。布勒兹巴斯加尔是埃登尼巴斯加尔的儿子,埃登尼是麦尔生利的通信人"巴斯加尔坩线(Limacon of Pascal)" 就是 因唉尔登而命冲兄滚名的。布勒兹在父亲的教养下,智慧开发很早,在他十六岁时就发现了"巴斯加尔定理",这个定理涉及一个内 接于圆锥曲线的六边行。这个定理在1641年印在单页纸上发表,并显示其受笛卡儿的影响。没有几年,巴斯加尔又发明了一 部计算机。散余在他二十五岁时,他决心到太子港的修道院去过一种冉森派教徒的苦行生活,但仍然继续提供时间来从事于科学 和文学的研究。他论及一种对机率的研究极为有用,而是由二项式的系数所组成的"算术的三角形"的论着在他死后的1664年 出现。他对积分法的论着,极其对无穷小的思辩,这都影响到莱布尼兹。他也是首先建立完全归纳原理令人满意的叙述第一 人。在 1642~1644年间他设计并制造了一个计算装置,原只是为了帮他的父亲计算收税,却因此而闻名于当时,在某种意义 上,就是第一架数字计算机。1646年以前,巴斯卡一家都是信天主教,由于他父亲的一场病,使他和一种更深的宗教信仰有 所接触,对他以后的生活影响很深。1646年他为了检验物理学家伽利略的托里切利理论,制造 了水银气压计,为往后的流体静力学及流体动力学的研究铺平 了道路。在1651~ 1654年,紧张的科学工作,写了关于液体平 衡,空气的重量,和密度及算数三角形等篇论文。后一篇论文 奠定了概率计算的基楚。在1655 ~1659年间又写了许多的宗教着作,但从1659年起疾病使他不能正常工作,最后忍受了巨大 的病痛而逝世。
狄 沙 格 (Girard Desargues)
出生年代: 1591~1661
国籍: 法国
着作: <试论锥面与平面相截的结果的初稿>(1639)
生平: 狄沙格是法国数学学家,引入射影几何学的主要概念。 他是黎赛留枢机主教和法国政府的技术顾问。根据笛卡 儿传记的作者巴耶所述,狄沙格在1628年和笛卡儿相 识 。他早年的事绩极少人知,约1630年他成为一个数学组 织的成员。他在<论透视截面>(1636)中提出了两个三角 形透视的定理,但并未受到同代人的重视。他最重要的 着作<试论锥面与平面相截的结果的初稿>(1639)对把射 影几何学应用到圆锥截面理论上做了很大胆的创新,这 对他的追随者帕斯卡有了重要的影响。但他在这部作品 中独特得用植物学名词做数学术语,不用笛卡儿符号, 致使该书两百年无人问津。除了他的朋友麦瑟尼,笛卡 儿,帕斯卡,费马以外,他的同僚都称他为狂人。甚至 在笛卡儿得知尘派其提出处理锥线的新方法时,也曾写信给 麦瑟尼说他不相信一个人可以不借助代数方法去处理圆锥曲面,但在看过狄沙格的论文之后,也对他推崇有加,费马认为狄沙格才是锥线理论的创始人, 从他作品中见到宗庙之美,但一般人无法了解,因而有了嫌厌之心,狄沙格也只好归隐于自己的老家。1845年发现他的手稿由于对于射影几何学的兴趣正在复苏,他的贡献的重要性才为人所认定。
罗 必 达 (L'Hospital)
出生年代: 1661~1704
国籍: 法国
着作: 《阐明曲线的无穷小分析》〔1696〕
生平: 洛必达是一位法国的数学家,1661年出生于法国的贵族家庭,1704年2月2日卒于巴黎。他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研。在他15岁时就学会解旋轮线的问题。稍后他放弃了炮兵的职务,投入更多的时间在数学上,在瑞士数学家白努利的门下学习微积分,并成为法国新解析的主要成员。 洛必达的<<无限小分析>>(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模范着作,书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,洛必达于前言中向莱布尼兹和白努利致谢,特别是Jean Bernoulli。洛必达逝世之后,白努利发表声明该法则及许多的其它发现该归功于他。洛必达的着作尚盛行于18世纪的圆锥曲线的研究。他最重要的着作是《阐明曲线的无穷小分析》〔1696〕,这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载着约翰第一‧伯努利在1694年7月22日告诉他的一个着名定理:“洛必达法则,则求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故“洛必达法则”之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于 他过早去逝,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。
(www.mcjh.kl.e.tw/usr/jks/jks.htm)
笛 卡 儿 (Descartes)
出生年代: 1596~1650
国籍: 法国
着作: 《论世界》《方法论》《形而上学的沉思》及《哲学原理 》《几何学》
生平: 笛卡儿是法国着名的哲学家、数学家、物理学家及自然科学家。他于 1596年3月31日出生于图伦一贵族家庭。童年就读于拉弗莱什公学时,因体弱多病,被允早晨在床上读书,渐渐养成一种喜爱宁静,擅于思考的习惯。在校内更结织了密友梅森。1612年,他到巴黎普瓦捷大学供读法律,四年后获颁博士学位,并成为律师。当时法国社会的有志之士,不是致力宗教,便是献身军事,这种风气甚为盛行,这驱使笛卡儿于1618年往荷兰从军。服役期间,他仍对数学感兴趣。某日休息,他在街上散步时受一荷兰招贴所吸引,但因不懂荷兰文,于是请身边的人译成拉丁文或法文。恰巧这人是多特学院院长毕克门。经此翻译,笛卡儿才得悉这是一张当时数学家所下的“挑战书”,广徵上列难题答案。笛卡儿竟在数小时内求得答案,使毕克门大为佩服
。1621年,笛卡儿脱离军队返法,但适逢内乱,于是游历于丹麦、德国、意大 利等地。直至1625年才返回法国,与梅森等人一起研 讨数学。1628年移居荷兰,并通过数学家梅森神父,与欧洲主要学者保持密切联络。闲时更从事数学、天文学、物理学、化学及生理学等领域的研究。他所有着作几乎全是在荷兰完成的。他的主要着作有指导哲理之原则;〔1628年写成〕,以哥白尼学说为基础之《论世界》1634年完成,但因伽利略受教会迫害而未出版〕,《方法论》1637年6月8日于莱顿匿名出版,《形而上学的沉思》及《哲学原理 〔1644年出版〕。
1649年冬,他应邀到斯德哥尔摩为瑞典女皇克利斯提娜授课。最后,这位以创立解析几何而闻名的数学家因肺炎于1650年 2月11日在当地病逝。笛卡儿早在读书时期,已怀疑和反对统治欧洲思想界的经院哲学。多年来的游历与多方面的科学研究,加上与社会各阶层人士之交往及不断的自我反思,使他坚信必须抛弃经院哲学,探求正确思想方法,创立为实践服务的哲学,才可成为自然的主人与统治者 ”。 他认为数学是其他一切科学之理想与模型,提出了以数学为基础,以演绎法为核心的方法论及认识论,成为西方近代哲学创始人之一,对后世的哲学、数学及自然科学起了巨大作用。而且他还一直为捍卫他的学说而和教会及其他反对势力抗衡。此外,他于1637年以法文写成的《方法论》〔最早的一部着作〕,附设三短论及一篇序言分别为:《折光学》、《气象学》、《几何学》及《科学中正确运用理性和追求真理的方法论》。当中以《几何学》为代表作,亦因此确立了他于数学史上之地位。这亦是他唯一的数学论着。全书共分三卷,内容分析了几何学与代数学的优劣,表示要寻求另一种包含两者好处而没有两者劣处的方法。在卷一中,他把几何问题化作代数问题,提出几何问题的统一作图法:以单位线段及线段的加、减、乘、除、开方等概念,将线段和数量联系起来,通过线段间的关系设立方程。在卷二中,他以这新方法解决帕普斯问题时,在平面上以一直线为基线,为它规定一起点及选定与之相交的另一直线,三项分别为 x轴,点及 y轴,形成一个斜座标系。 此时,该平面上的任何一点位置均可以〔x,y〕唯一地表示。帕普斯问题便化为一含两个未知数的二次不定方程。他指出方程的次数与座标系的选择无关,因此可依方程的次数
将曲线分类。
在卷三中,他指出方程可有与它的次数一样多的根,且提出笛儿符号法则:方程正根的最多个数等同其系数变号的次数;其负根〔假根〕的最多个数等同符号不变的次数。笛卡儿还以a,b、c,……表示已知量及x,y,z,……表示未知量去改进韦达所创的符号系统。《几何学》提出了解析几何学之主要思想与方法,这标志着解析几 何学之诞生。笛卡儿毕生专注于各项知识部门的研究,为人类的科学宝库带来丰厚的成果,对后世的研究影响深远。
棣 美 弗 (Moivre Abraham de)
出生年代: 1667~1754
国籍: 法国
着作: 论赌博法
生平: 数学家,发现解析三角和概率论的先驱.生于法国,是喀尔文派新教徒.1685年因保护喀尔文教徒的南特令被废除而监禁. 不久获释,迁居伦敦,成为牛顿和哈雷的挚友.1697年被选为伦敦皇家学会会员,后又被选为柏林科学 院和法国科学院院士. 尽管他是着名的数学家,但无固定工作,靠当家庭教师和赌博与任保险顾问谋生.1718年,他把1711年在((皇家学会会报))(Philosophical Transactions)上连载的论文((论赌博法))(Demensura sortis) 扩充为''机遇说((The Doctrine of Chances)) 一书.虽然现代概率论肇始于巴斯葛(Blaise Pascal)与费马(Pierre de Fermat)之间未发表 的通信 (1654)和惠更斯 (Christiaan Huygens) 的论文关于赌博中的推断 (De Ratiociniis in Ludo Aleae,1657), 但棣美弗的着作大大推进了机率论的研究.所谓统计独立的定义, 即各独力事件的积的机率等于各独立事件机率的乘积,最先是在棣美弗的((机遇说))中说到的.他的第二篇关于概率论的着作是((综合分析))(Misellanea Analytica,1730)
他第一个使用概率积分,这种积分的被积函数是exp(-x*x) 又首创斯特凌公式,即对于大数 n!但这公式却被误认为是英国的詹姆斯.斯特凌(1692-1770)最先提出的.1733年他利用斯特凌公式导出正态频率曲线作为二式项定理的近似.他是最早在三角学中应用复数的人之一.以他命名的棣美弗公式对始三角学从几何领域进入分析领域起很大作用.
费 马 (Fermat Pierre de)
出生年代: 1601~1665
国籍: 法国
生平: 费马是法国数学家费马于1601年8月17日在法国南部德洛马涅出生。早年在家乡受教育,后来进入图卢兹大学攻读法律,毕业后任职律师,自1631年起担任图卢兹议会议员。其间他于空闲时间专研数学,并常以书信与笛卡儿,梅森等名学者交往,讨论数学问题。他饱览群书,精于数国的文字,掌握多门科学的知识。虽然年近30才认真注意数学,但成就累累。最后于1655年在卡斯特尔逝世。他生前由于性情淡泊,为人谦逊,因此较少发表论作,大多成果只留在手稿,通信,或书业之空白处。他的儿子在1679年将其遗稿整理成书在图卢兹出版。费马与笛卡儿同为17世纪上半期的首要数学家,近代数论中,在一个世纪后的欧拉之前,无人能与之匹敌。他独立于笛卡儿发现了解析几何的基本原理。由于所设想求曲线的切线及其极大极小点的方法而被认为是微积分的先驱。通过了巴斯卡的通信,成为了概率论的共同创办人之一。在1629年,他开始重写几何学家阿坡罗尼乌斯久以失传的<<平面轨迹>>,不久发现透过座标将代数用于几何,轨迹的研究将会易于进行。在光学中,费马应用了极大极小的方法,揭示了光线的折射定律同他的"最短时间原理"相吻合。受到<<算术>>一书的影响,费马在数论得到很多新的结果。最出色的结果之一是4n+1的素数均能唯一的表示为两个平方数之和。费马所提出的定理中,有两个分别被称为大定理与小定理,前者又称为最后定理。小定理是费马给他的朋友福兰尼可的信中提出的,其内容是p为质数,a p互质,则a的p次方减a能被p整除。大定理是---若n2则方程式没有整数解。费马在书中的空白处写下了这个定理,也发现了奇妙的证明方法,只是空白处不够而未将其写下。由于他在数论,解析几何,概率论,等方面的贡献良多,被后世誉为"业余数学家之王" 。
(www.mcjh.kl.e.tw/usr/jks/jks.htm)
罗 伯 勃 (Gilles Persone de Roberval)
出生年代: 1602~1675
国籍: 法国
生平: 罗伯勃是法国数学家。在曲线几何上有重大发展。1632年任巴黎法兰西学院教授。研究了却定立体的表面积和体积的方法。罗伯勃常与当时的数学家进行科学论战,包括数学家笛卡儿。罗伯勃在他的(Trait des indivisible) (虽然迟至1693年才发表,才1634年起就有其纪录)中,将阿基米德在螺线上求切线的方法一般化,与阿基米德一样,罗伯勃把曲线看成动点的轨迹,它受两种速度的作用,例如从炮口上射出的抛物体,受到水平速度,和垂直速度的作用,其合成速度为边的长方形之对角线;罗伯勃把这种合成向量当作曲线在P点之切线;根据托里拆利的解说,罗伯勃德方法是利用伽利略所论断的一个定理:水平速度和垂直速度是互相独立的。将切线当作合成速度的说法,远叫希腊时代将切线当作与曲线相触的直线为复杂,前者成处理许多后者不能处理的问题。再将纯几何与动力学联结的作用上,它是一个非常重要的角色;在伽利略之前,纯几何与动力学是各自为政的。换句话说,这种切线观使数学园地实体化,因为它是以物理观念来定义切线。但有许多曲线和运动无关,此时切线就无由而生,所以需要以其他的方法来寻求切线。
伯 斯 (Abraham Bosse)
出生年代: 1602~1676
国籍: 法国
着作: Maniere universelle de M.Desargues,pour pratiquer la- perspective
生平: 从事射影几何(Projective Geometry)的研究,为名数学家迪沙格(Desargues)的挚友,且将笛氏的一些重要的三角定理和其他定理加以整理。
资料出处: 幼狮数学大辞典
张 诚 (Gerbillon Jean-Francois)
出生年代: 1654~1707
国籍: 法国
着作: <实用和理论几何学><几何原本>的汉文<算法纂耍总纲><测量高远仪器用法>和<比例规解>
生平: 法国数学家,公年1687年来华,取中文名张诚,精通天文数算,曾任清康熙帝教师、讲授墨法,测算等西学。其中几何学为法人巴蒂所着之<实用和理论几何学>,此外还有<几何原本>的汉文 ,本及<算法纂耍总纲><测量高远仪器用法>和<比例规解>等书。对于康熙主办<数理精蕴>的巨着编制影响甚大。
福 兰 尼 可 (Frenicle de Bessy Bernard)
出生年代: 1605~1675
国籍: 法国
生平: 法国代数学家,为伟大数学家费马的至友,费马曾于1640年十月十八日致函说明minor 定理,其内容为:若p为质数,a,q互质,则能被q整除。关于major Fermat“定理”认为若n>2,则方程式无 整数解。费马曾提到用无限前推法以证明n=4的情形,来述细节后福兰尼可在所发表之着作 :Traite des triangles rectangles annombres (既关于直角三角形的数学性质)证明了n=4的过程,该论着在他死后之次年发表,后刊于in.de I'Acad, des Sci, Paeis, 5,1729, 83-166。
白 晋 (Bouvet Joachim)
出生年代: 1656~1730
国籍: 法国
生平: 法国数学家,白晋为抵华后所取中文名,通晓天文、历法和数算。十七世纪初叶,法国势力日益强,大法路易十四世拟拓展劫力至东,方故派遣多位传教士前来中国,白晋(又名白进)为其中着名数学家,公元1687年来华滞留京城“供奉内廷”,曾任清朝康熙帝的教师。
佩 蒂德.比利(Jacques de Billy)
出生年代: 1602~1679
国籍: 法国
着作: 数论
生平: 1602年3月18日生于瓦兹。曾在里昂当数学教师。1679年1月14日逝世。
德.比利与费马就数论方面问题有过书信往来,他还研究过算术。曾提出一系列问题,这些问题引起了许多数学家的关注,有的被欧拉等人解决。
资料出处: 静宜大学一楼资料库(数学家的辞典P.153)索书号:R/310.9904/1731/
德.伯利(Jacques de Billy)
出生年代: 1601~1652
国籍: 法国
着作:
生平: 德.伯恩,又称伯恩。当过军官和法官。德.伯恩是第一个领会笛卡儿数学思想的人,他也有不少数学研究的成果发表于笛卡儿的“几何学”里。首先提出方程式ax+by=c确定一条直线的观点几何学文章数篇
资料出处: 数学家的辞典P.153
J Bernier, Histoire de Blois (Paris, 1682), 563-568.
P Costabel, Florimond de Beaune, érudit et savant de Blois, Revue d'histoire des sciences 27 (1974), 73-75.
P Costabel, Le traité de l'angle solide de Florimond de Beaune, in 1968 Actes Onzième Congrès International d'Histoire des Sciences, Sect. III : Histoire des Sciences Exactes (Astronomie, Mathématiques, Physique) (Wroclaw, 1968), 189-194.
A Thibaut, Florimond de Beaune, Bull. de la Soc. des sciences et lettres Loir et Cher 4 (1896), 13-29.
法里布丁(Honoré Fabri)
出生年代: 1607~1688
国籍: 法国
着作: 几何学概述(1669年)
正弦曲线与割线的几何学研究(1659年)
生平: 法布里,1607年4月5日出生。他是卡瓦列里的学生。1688年3月8日逝世。正弦曲线这一术语就是他在其着作中,首先引入的。Honoré Fabri在 1626 年参加了耶稣会命令,花费两年在亚维农。在1628年他进入了里昴的耶苏会学院学习哲学,从1632到1636在里昴继续研究神学。在 1635年时他被任命了他的第一个职位是耶苏学院中,即作为1636到1638年中哲学的教授。耶苏会学院的更进一步的位置跟随了他。在他在学院那时, 1638年一年中他成了逻辑学的教授,而在1640年之后六年中,他更成为在耶苏会学院中逻辑和数学两项的教授。他写了多于三十个着作,一些它回顾了在哲学会议录中。Fabri 是由耶苏教会学院产生的许多着名教授第一个;他的学生包括了Pierre Mousnier,Francois de Raynaud,Jean-Dominique Cassini和Philippe de La Hire。他是用 Gassendi 到友谊里领导的数学家的一个圆圈的领导者他,莱布尼兹,Mersenne ,笛凯尔和两个 Huygenes (父亲和儿子) , 克劳德 Dechales 和 Berthet 。 Fabri's 的极大活动的注意力在于,土星的环,潮汐的理论,磁力学,光学设备,和动力学中的几乎所有紧急科学问题。在数学中,无穷小方法和连接区问题更显着。 Fabri 试图为基础以月亮的行动的潮水现象的解释。把 Fabri 也看作 Jansenism 错误的最好的专家。在他的紧密朋友中间是耶苏会伙伴和他的在学院的同学Père Lachaise,在他以后在巴黎中命名为这个着名墓地。在1646时Fabri去到罗马,他在那遇到了瑞希,他参加了调查涉及学院的问题而入狱。因为他自己不能相信宗教问题和他相信的哲学被控告了。笛卡尔在他回到罗马关入监狱中和在1668到69年中花费一年以后回到法兰西。经由瑞希他相识利奥波德大公爵II并且Fabri不久后就从监狱解脱了。 Fabri 对天文学,物理学和数学工作。 在 1660 年他所研究土星环的一个主题,使他和Huygens在争论方面变得复杂而且持续了五年。 他也发现了这个仙女座星云。Fabri 发展了基于月亮的行动的潮汐理论。他也研究了磁,光学设备和微积分。 在微积分中他比Cavalieri更接近牛顿且他的标记法较麻烦。他在微积分方面的工作在他的主要数学出版物方面出现了几何小品。由于关于由产生的摆线的争论写了这本书向巴斯卡挑战。Fabri在这个工作方面计算了。
Honoré Fabri尽力沿着几何学的线统一所有物理学。在皇家协会的哲学会议录中描述了这个努力," 涉及他的方法他已经 几何学方法中领悟了整个物理学。也给为什么这个天空是蓝的第一个合理解释的 Fabri 发现了毛细管弥散,使他的原因以光的弥散为基础。他应用这个微积分到这个新近发明的物质世界迅速和他应用得是第一个为伽利略的表明物体在同等时间中落下同等距离的实验提供一个使人信服原因。伽利略依次由于另一个耶苏会徒Niccolo Cabeo,S.J. 的着作首先变得对问题感兴趣。 在亚历山大下教皇他的关于伽利略情况的声明在监狱里 50 天带来了 Fabri VII,并且仅仅由利奥波德 II的干涉释放了他。他仍然在他的 Dialogi physici ( 1665 ) 授权的" de motu terrae " 中放了一章节 (" 涉及地球的运动" )。Fabri's 的摆线的具有创造才能正交鼓舞了年轻 Gottfried 莱布尼兹。Issac 牛顿宣称他首先从Honoré Fabri的着作听到了 Grimaldi's 的光衍射的教学。
资料出处: 数学家的辞典P.169
http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html
http://www.faculty.fairfield.e/jmac/sj/scientists/fabri.htm
奥扎南(Jacques Ozanam)
出生年代: 1640~1717
国籍: 法国
着作: 字典(1690年)
数学教程(1693年)
数学与物理学游戏
生平: 奥扎南,1640年出生。1701年成为巴黎科学院院士。1717年逝世。他主要研究代数和几何学。他于1690年发表了着作“字典”,其中对‘解析’这一术语进行的解释是:用代数方法进行分析。他承认四维空间,但存在于想象空间。
http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html
卡尔加维(Pierre de Carcavi)
出生年代: 1600~1684
国籍: 法国
生平: Pierre de Carcavi 没有正式大学的文凭。在1632年到1636年之间,他是Toulouse议会的顾问。事实上,1632年他第一次遇到费马,当他们都是Toulouse议会的成员而且他们仍是朋友。1636年Carcavi在巴黎的Grand Conseil议会买了一间办公室。 1648年,无论如何,连续的艰苦打击
④ 17世纪前后的对数学发展起重大作用的重大事件或人物
梅文鼎
勾股举隅为梅文鼎研究中国传统勾股算术的着作,全书一卷,其中的主要成就,是对勾股定理的证明和对勾股算术算法的推广。书中首列“和较名义”,其次以两幅“弦实兼勾实股实图”来说明勾股定理,其论说的根据是出入相补原理,
在内容上,本书大致上可分作两雀念逗部分,一为勾股算术,另一主要为勾股测量。前者梅文鼎对其评价很高,他认为此式“乃立之根也。而其理皆具古图中,学者所宜深玩。”这里的“古图”指的即是赵爽注《周髀算经中》之“勾股圆方图”,对此式的证明也是利用此图来完成的。
值得注意的是,“弦与勾股和求勾股用量法”一题中所用的尺规作图之方法,与徐光启《勾股义》中“勾股求容圆”来作比较,可以发现梅文鼎在尺规作图的概念已相当正确,显示梅文鼎对《几何原本》有一定深度的了解。另外,从梅文鼎在测量问题上所使用的出入相补法来看,其内容相当贴近杨辉乃至于刘徽的作法,有别于明末西方传入的测量方法,这一点颇值得我们来作后续探究
《几何通解》的主要诉求是“以勾股解《几何原本》之根”,梅文鼎的作法是采用传统的勾股方法来解《几何原本》前六卷的部分命题,
其中,梅文鼎花了相当多的篇幅说明“理分中末线”(即黄金比例),其曰:“几何不言勾股,然其理并勾股也,故其最难者以勾股释之则明。惟理分中末线似与勾股异源。今为游心立法之初,而仍出于勾股。”由此,可见梅文鼎对传统勾股术的重视。
勾股定理即为商高定理又叫毕氏定理,我从以前就很喜欢这个东西,第一次接触这个东西的时候,我就觉得很有趣,记得我第一次喜欢数学,是在国小的时候,老师说A:B=C:D 然后内项相乘会等于外项相乘,我第一次听到觉得好不可思议喔!于是反反复覆的去计算,真的是这样,于是我觉得数学好有趣。第二次就是商高定理了,我已经忘了是什么时候,只是a2+b2=c2 让我觉得好有趣,而且我很喜欢三角形,从这之后,我觉得高返数学是一科还蛮有趣的科目,我就还蛮喜欢数学的。
巴 斯 卡(Blaise Pasacl)
出生年代: 1623~1662
国籍: 法国顷卖
着作: 算术的三角形
发明了一 部计算机
生平: 巴斯卡,法国数学学家,物理学家,笃信宗教的哲学家, 散文大师,近代概率论的奠基者。他出生于法国的 Clermont,从童年到短暂的生命结束为止,都体弱不堪,他的父亲曾在他 15岁或16岁前企图禁止他念数学。但巴斯卡在12岁时硬要知道几何的真正面目, 就以所得的资料为基楚,开始自我摸索。17 岁时写成了数学成就很高的圆锥截线论这是他研究狄沙格的关于射影几何的经典工作的结果。布勒兹巴斯加尔是埃登尼巴斯加尔的儿子,埃登尼是麦尔生利的通信人"巴斯加尔坩线(Limacon of Pascal)" 就是 因唉尔登而命名的。布勒兹在父亲的教养下,智慧开发很早,在他十六岁时就发现了"巴斯加尔定理",这个定理涉及一个内 接于圆锥曲线的六边行。这个定理在1641年印在单页纸上发表,并显示其受笛卡儿的影响。没有几年,巴斯加尔又发明了一 部计算机。在他二十五岁时,他决心到太子港的修道院去过一种冉森派教徒的苦行生活,但仍然继续提供时间来从事于科学 和文学的研究。他论及一种对机率的研究极为有用,而是由二项式的系数所组成的"算术的三角形"的论着在他死后的1664年 出现。他对积分法的论着,极其对无穷小的思辩,这都影响到莱布尼兹。他也是首先建立完全归纳原理令人满意的叙述第一 人。在 1642~1644年间他设计并制造了一个计算装置,原只是为了帮他的父亲计算收税,却因此而闻名于当时,在某种意义 上,就是第一架数字计算机。1646年以前,巴斯卡一家都是信天主教,由于他父亲的一场病,使他和一种更深的宗教信仰有 所接触,对他以后的生活影响很深。1646年他为了检验物理学家伽利略的托里切利理论,制造 了水银气压计,为往后的流体静力学及流体动力学的研究铺平 了道路。在1651~ 1654年,紧张的科学工作,写了关于液体平 衡,空气的重量,和密度及算数三角形等篇论文。后一篇论文 奠定了概率计算的基楚。在1655 ~1659年间又写了许多的宗教着作,但从1659年起疾病使他不能正常工作,最后忍受了巨大 的病痛而逝世。
资料出处: 大英网络全书
狄 沙 格 (Girard Desargues)
出生年代: 1591~1661
国籍: 法国
着作: <试论锥面与平面相截的结果的初稿>(1639)
生平: 狄沙格是法国数学学家,引入射影几何学的主要概念。 他是黎赛留枢机主教和法国政府的技术顾问。根据笛卡 儿传记的作者巴耶所述,狄沙格在1628年和笛卡儿相 识 。他早年的事绩极少人知,约1630年他成为一个数学组 织的成员。他在<论透视截面>(1636)中提出了两个三角 形透视的定理,但并未受到同代人的重视。他最重要的 着作<试论锥面与平面相截的结果的初稿>(1639)对把射 影几何学应用到圆锥截面理论上做了很大胆的创新,这 对他的追随者帕斯卡有了重要的影响。但他在这部作品 中独特得用植物学名词做数学术语,不用笛卡儿符号, 致使该书两百年无人问津。除了他的朋友麦瑟尼,笛卡 儿,帕斯卡,费马以外,他的同僚都称他为狂人。甚至 在笛卡儿得知其提出处理锥线的新方法时,也曾写信给 麦瑟尼说他不相信一个人可以不借助代数方法去处理圆锥曲面,但在看过狄沙格的论文之后,也对他推崇有加,费马认为狄沙格才是锥线理论的创始人, 从他作品中见到宗庙之美,但一般人无法了解,因而有了嫌厌之心,狄沙格也只好归隐于自己的老家。1845年发现他的手稿由于对于射影几何学的兴趣正在复苏,他的贡献的重要性才为人所认定。
罗 必 达 (L'Hospital)
出生年代: 1661~1704
国籍: 法国
着作: 《阐明曲线的无穷小分析》〔1696〕
生平: 洛必达是一位法国的数学家,1661年出生于法国的贵族家庭,1704年2月2日卒于巴黎。他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研。在他15岁时就学会解旋轮线的问题。稍后他放弃了炮兵的职务,投入更多的时间在数学上,在瑞士数学家白努利的门下学习微积分,并成为法国新解析的主要成员。 洛必达的<<无限小分析>>(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模范着作,书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,洛必达于前言中向莱布尼兹和白努利致谢,特别是Jean Bernoulli。洛必达逝世之后,白努利发表声明该法则及许多的其它发现该归功于他。洛必达的着作尚盛行于18世纪的圆锥曲线的研究。他最重要的着作是《阐明曲线的无穷小分析》〔1696〕,这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载着约翰第一‧伯努利在1694年7月22日告诉他的一个着名定理:“洛必达法则,则求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故“洛必达法则”之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于 他过早去逝,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。
资料出处: 数学史-数学思想的发展(上册)P414 和网站窝狼居(www.mcjh.kl.e.tw/usr/jks/jks.htm)
笛 卡 儿 (Descartes)
出生年代: 1596~1650
国籍: 法国
着作: 《论世界》《方法论》《形而上学的沉思》及《哲学原理 》《几何学》
生平: 笛卡儿是法国着名的哲学家、数学家、物理学家及自然科学家。他于 1596年3月31日出生于图伦一贵族家庭。童年就读于拉弗莱什公学时,因体弱多病,被允早晨在床上读书,渐渐养成一种喜爱宁静,擅于思考的习惯。在校内更结织了密友梅森。1612年,他到巴黎普瓦捷大学供读法律,四年后获颁博士学位,并成为律师。当时法国社会的有志之士,不是致力宗教,便是献身军事,这种风气甚为盛行,这驱使笛卡儿于1618年往荷兰从军。服役期间,他仍对数学感兴趣。某日休息,他在街上散步时受一荷兰招贴所吸引,但因不懂荷兰文,于是请身边的人译成拉丁文或法文。恰巧这人是多特学院院长毕克门。经此翻译,笛卡儿才得悉这是一张当时数学家所下的“挑战书”,广徵上列难题答案。笛卡儿竟在数小时内求得答案,使毕克门大为佩服
。1621年,笛卡儿脱离军队返法,但适逢内乱,于是游历于丹麦、德国、意大 利等地。直至1625年才返回法国,与梅森等人一起研 讨数学。1628年移居荷兰,并通过数学家梅森神父,与欧洲主要学者保持密切联络。闲时更从事数学、天文学、物理学、化学及生理学等领域的研究。他所有着作几乎全是在荷兰完成的。他的主要着作有指导哲理之原则;〔1628年写成〕,以哥白尼学说为基础之《论世界》1634年完成,但因伽利略受教会迫害而未出版〕,《方法论》1637年6月8日于莱顿匿名出版,《形而上学的沉思》及《哲学原理 〔1644年出版〕。
1649年冬,他应邀到斯德哥尔摩为瑞典女皇克利斯提娜授课。最后,这位以创立解析几何而闻名的数学家因肺炎于1650年 2月11日在当地病逝。笛卡儿早在读书时期,已怀疑和反对统治欧洲思想界的经院哲学。多年来的游历与多方面的科学研究,加上与社会各阶层人士之交往及不断的自我反思,使他坚信必须抛弃经院哲学,探求正确思想方法,创立为实践服务的哲学,才可成为自然的主人与统治者 ”。 他认为数学是其他一切科学之理想与模型,提出了以数学为基础,以演绎法为核心的方法论及认识论,成为西方近代哲学创始人之一,对后世的哲学、数学及自然科学起了巨大作用。而且他还一直为捍卫他的学说而和教会及其他反对势力抗衡。此外,他于1637年以法文写成的《方法论》〔最早的一部着作〕,附设三短论及一篇序言分别为:《折光学》、《气象学》、《几何学》及《科学中正确运用理性和追求真理的方法论》。当中以《几何学》为代表作,亦因此确立了他于数学史上之地位。这亦是他唯一的数学论着。全书共分三卷,内容分析了几何学与代数学的优劣,表示要寻求另一种包含两者好处而没有两者劣处的方法。在卷一中,他把几何问题化作代数问题,提出几何问题的统一作图法:以单位线段及线段的加、减、乘、除、开方等概念,将线段和数量联系起来,通过线段间的关系设立方程。在卷二中,他以这新方法解决帕普斯问题时,在平面上以一直线为基线,为它规定一起点及选定与之相交的另一直线,三项分别为 x轴,点及 y轴,形成一个斜座标系。 此时,该平面上的任何一点位置均可以〔x,y〕唯一地表示。帕普斯问题便化为一含两个未知数的二次不定方程。他指出方程的次数与座标系的选择无关,因此可依方程的次数
将曲线分类。
在卷三中,他指出方程可有与它的次数一样多的根,且提出笛儿符号法则:方程正根的最多个数等同其系数变号的次数;其负根〔假根〕的最多个数等同符号不变的次数。笛卡儿还以a,b、c,……表示已知量及x,y,z,……表示未知量去改进韦达所创的符号系统。《几何学》提出了解析几何学之主要思想与方法,这标志着解析几 何学之诞生。笛卡儿毕生专注于各项知识部门的研究,为人类的科学宝库带来丰厚的成果,对后世的研究影响深远。
资料出处: 数学史-数学思想的发展
棣 美 弗 (Moivre Abraham de)
出生年代: 1667~1754
国籍: 法国
着作: 论赌博法
生平: 数学家,发现解析三角和概率论的先驱.生于法国,是喀尔文派新教徒.1685年因保护喀尔文教徒的南特令被废除而监禁. 不久获释,迁居伦敦,成为牛顿和哈雷的挚友.1697年被选为伦敦皇家学会会员,后又被选为柏林科学 院和法国科学院院士. 尽管他是着名的数学家,但无固定工作,靠当家庭教师和赌博与任保险顾问谋生.1718年,他把1711年在((皇家学会会报))(Philosophical Transactions)上连载的论文((论赌博法))(Demensura sortis) 扩充为''机遇说((The Doctrine of Chances)) 一书.虽然现代概率论肇始于巴斯葛(Blaise Pascal)与费马(Pierre de Fermat)之间未发表 的通信 (1654)和惠更斯 (Christiaan Huygens) 的论文关于赌博中的推断 (De Ratiociniis in Ludo Aleae,1657), 但棣美弗的着作大大推进了机率论的研究.所谓统计独立的定义, 即各独力事件的积的机率等于各独立事件机率的乘积,最先是在棣美弗的((机遇说))中说到的.他的第二篇关于概率论的着作是((综合分析))(Misellanea Analytica,1730)
他第一个使用概率积分,这种积分的被积函数是exp(-x*x) 又首创斯特凌公式,即对于大数 n!但这公式却被误认为是英国的詹姆斯.斯特凌(1692-1770)最先提出的.1733年他利用斯特凌公式导出正态频率曲线作为二式项定理的近似.他是最早在三角学中应用复数的人之一.以他命名的棣美弗公式对始三角学从几何领域进入分析领域起很大作用.
资料出处: 大英网络全书 P558
费 马 (Fermat Pierre de)
出生年代: 1601~1665
国籍: 法国
生平: 费马是法国数学家费马于1601年8月17日在法国南部德洛马涅出生。早年在家乡受教育,后来进入图卢兹大学攻读法律,毕业后任职律师,自1631年起担任图卢兹议会议员。其间他于空闲时间专研数学,并常以书信与笛卡儿,梅森等名学者交往,讨论数学问题。他饱览群书,精于数国的文字,掌握多门科学的知识。虽然年近30才认真注意数学,但成就累累。最后于1655年在卡斯特尔逝世。他生前由于性情淡泊,为人谦逊,因此较少发表论作,大多成果只留在手稿,通信,或书业之空白处。他的儿子在1679年将其遗稿整理成书在图卢兹出版。费马与笛卡儿同为17世纪上半期的首要数学家,近代数论中,在一个世纪后的欧拉之前,无人能与之匹敌。他独立于笛卡儿发现了解析几何的基本原理。由于所设想求曲线的切线及其极大极小点的方法而被认为是微积分的先驱。通过了巴斯卡的通信,成为了概率论的共同创办人之一。在1629年,他开始重写几何学家阿坡罗尼乌斯久以失传的<<平面轨迹>>,不久发现透过座标将代数用于几何,轨迹的研究将会易于进行。在光学中,费马应用了极大极小的方法,揭示了光线的折射定律同他的"最短时间原理"相吻合。受到<<算术>>一书的影响,费马在数论得到很多新的结果。最出色的结果之一是4n+1的素数均能唯一的表示为两个平方数之和。费马所提出的定理中,有两个分别被称为大定理与小定理,前者又称为最后定理。小定理是费马给他的朋友福兰尼可的信中提出的,其内容是p为质数,a p互质,则a的p次方减a能被p整除。大定理是---若n2则方程式没有整数解。费马在书中的空白处写下了这个定理,也发现了奇妙的证明方法,只是空白处不够而未将其写下。由于他在数论,解析几何,概率论,等方面的贡献良多,被后世誉为"业余数学家之王" 。
资料出处: 数学史-数学思想的发展(上册)P296和网站窝狼居(www.mcjh.kl.e.tw/usr/jks/jks.htm)
罗 伯 勃 (Gilles Persone de Roberval)
出生年代: 1602~1675
国籍: 法国
生平: 罗伯勃是法国数学家。在曲线几何上有重大发展。1632年任巴黎法兰西学院教授。研究了却定立体的表面积和体积的方法。罗伯勃常与当时的数学家进行科学论战,包括数学家笛卡儿。罗伯勃在他的(Trait des indivisible) (虽然迟至1693年才发表,才1634年起就有其纪录)中,将阿基米德在螺线上求切线的方法一般化,与阿基米德一样,罗伯勃把曲线看成动点的轨迹,它受两种速度的作用,例如从炮口上射出的抛物体,受到水平速度,和垂直速度的作用,其合成速度为边的长方形之对角线;罗伯勃把这种合成向量当作曲线在P点之切线;根据托里拆利的解说,罗伯勃德方法是利用伽利略所论断的一个定理:水平速度和垂直速度是互相独立的。将切线当作合成速度的说法,远叫希腊时代将切线当作与曲线相触的直线为复杂,前者成处理许多后者不能处理的问题。再将纯几何与动力学联结的作用上,它是一个非常重要的角色;在伽利略之前,纯几何与动力学是各自为政的。换句话说,这种切线观使数学园地实体化,因为它是以物理观念来定义切线。但有许多曲线和运动无关,此时切线就无由而生,所以需要以其他的方法来寻求切线。
资料出处: 数学史-数学思想的发展(上册)P371
'
伯 斯 (Abraham Bosse)
出生年代: 1602~1676
国籍: 法国
着作: Maniere universelle de M.Desargues,pour pratiquer la- perspective
生平: 从事射影几何(Projective Geometry)的研究,为名数学家迪沙格(Desargues)的挚友,且将笛氏的一些重要的三角定理和其他定理加以整理。
资料出处: 幼狮数学大辞典
编辑者 涂昱安
张 诚 (Gerbillon Jean-Francois)
出生年代: 1654~1707
国籍: 法国
着作: <实用和理论几何学><几何原本>的汉文<算法纂耍总纲><测量高远仪器用法>和<比例规解>
生平: 法国数学家,公年1687年来华,取中文名张诚,精通天文数算,曾任清康熙帝教师、讲授墨法,测算等西学。其中几何学为法人巴蒂所着之<实用和理论几何学>,此外还有<几何原本>的汉文 ,本及<算法纂耍总纲><测量高远仪器用法>和<比例规解>等书。对于康熙主办<数理精蕴>的巨着编制影响甚大。
福 兰 尼 可 (Frenicle de Bessy Bernard)
出生年代: 1605~1675
国籍: 法国
生平: 法国代数学家,为伟大数学家费马的至友,费马曾于1640年十月十八日致函说明minor 定理,其内容为:若p为质数,a,q互质,则能被q整除。关于major Fermat“定理”认为若n>2,则方程式无 整数解。费马曾提到用无限前推法以证明n=4的情形,来述细节后福兰尼可在所发表之着作 :Traite des triangles rectangles annombres (既关于直角三角形的数学性质)证明了n=4的过程,该论着在他死后之次年发表,后刊于in.de I'Acad, des Sci, Paeis, 5,1729, 83-166。
白 晋 (Bouvet Joachim)
出生年代: 1656~1730
国籍: 法国
生平: 法国数学家,白晋为抵华后所取中文名,通晓天文、历法和数算。十七世纪初叶,法国势力日益强,大法路易十四世拟拓展劫力至东,方故派遣多位传教士前来中国,白晋(又名白进)为其中着名数学家,公元1687年来华滞留京城“供奉内廷”,曾任清朝康熙帝的教师。
佩 蒂德.比利(Jacques de Billy)
出生年代: 1602~1679
国籍: 法国
着作: 数论
生平: 1602年3月18日生于瓦兹。曾在里昂当数学教师。1679年1月14日逝世。
德.比利与费马就数论方面问题有过书信往来,他还研究过算术。曾提出一系列问题,这些问题引起了许多数学家的关注,有的被欧拉等人解决。
资料出处: 静宜大学一楼资料库(数学家的辞典P.153)索书号:R/310.9904/1731/
编辑者 吴明忠
德.伯利(Jacques de Billy)
出生年代: 1601~1652
国籍: 法国
着作:
生平: 德.伯恩,又称伯恩。当过军官和法官。德.伯恩是第一个领会笛卡儿数学思想的人,他也有不少数学研究的成果发表于笛卡儿的“几何学”里。首先提出方程式ax+by=c确定一条直线的观点几何学文章数篇
资料出处: 数学家的辞典P.153
J Bernier, Histoire de Blois (Paris, 1682), 563-568.
P Costabel, Florimond de Beaune, érudit et savant de Blois, Revue d'histoire des sciences 27 (1974), 73-75.
P Costabel, Le traité de l'angle solide de Florimond de Beaune, in 1968 Actes Onzième Congrès International d'Histoire des Sciences, Sect. III : Histoire des Sciences Exactes (Astronomie, Mathématiques, Physique) (Wroclaw, 1968), 189-194.
A Thibaut, Florimond de Beaune, Bull. de la Soc. des sciences et lettres Loir et Cher 4 (1896), 13-29.
编辑者 : 吴明忠
法里布丁(Honoré Fabri)
出生年代: 1607~1688
国籍: 法国
着作: 几何学概述(1669年)
正弦曲线与割线的几何学研究(1659年)
生平: 法布里,1607年4月5日出生。他是卡瓦列里的学生。1688年3月8日逝世。正弦曲线这一术语就是他在其着作中,首先引入的。Honoré Fabri在 1626 年参加了耶稣会命令,花费两年在亚维农。在1628年他进入了里昴的耶苏会学院学习哲学,从1632到1636在里昴继续研究神学。在 1635年时他被任命了他的第一个职位是耶苏学院中,即作为1636到1638年中哲学的教授。耶苏会学院的更进一步的位置跟随了他。在他在学院那时, 1638年一年中他成了逻辑学的教授,而在1640年之后六年中,他更成为在耶苏会学院中逻辑和数学两项的教授。他写了多于三十个着作,一些它回顾了在哲学会议录中。Fabri 是由耶苏教会学院产生的许多着名教授第一个;他的学生包括了Pierre Mousnier,Francois de Raynaud,Jean-Dominique Cassini和Philippe de La Hire。他是用 Gassendi 到友谊里领导的数学家的一个圆圈的领导者他,莱布尼兹,Mersenne ,笛凯尔和两个 Huygenes (父亲和儿子) , 克劳德 Dechales 和 Berthet 。 Fabri's 的极大活动的注意力在于,土星的环,潮汐的理论,磁力学,光学设备,和动力学中的几乎所有紧急科学问题。在数学中,无穷小方法和连接区问题更显着。 Fabri 试图为基础以月亮的行动的潮水现象的解释。把 Fabri 也看作 Jansenism 错误的最好的专家。在他的紧密朋友中间是耶苏会伙伴和他的在学院的同学Père Lachaise,在他以后在巴黎中命名为这个着名墓地。在1646时Fabri去到罗马,他在那遇到了瑞希,他参加了调查涉及学院的问题而入狱。因为他自己不能相信宗教问题和他相信的哲学被控告了。笛卡尔在他回到罗马关入监狱中和在1668到69年中花费一年以后回到法兰西。经由瑞希他相识利奥波德大公爵II并且Fabri不久后就从监狱解脱了。 Fabri 对天文学,物理学和数学工作。 在 1660 年他所研究土星环的一个主题,使他和Huygens在争论方面变得复杂而且持续了五年。 他也发现了这个仙女座星云。Fabri 发展了基于月亮的行动的潮汐理论。他也研究了磁,光学设备和微积分。 在微积分中他比Cavalieri更接近牛顿且他的标记法较麻烦。他在微积分方面的工作在他的主要数学出版物方面出现了几何小品。由于关于由产生的摆线的争论写了这本书向巴斯卡挑战。Fabri在这个工作方面计算了。
Honoré Fabri尽力沿着几何学的线统一所有物理学。在皇家协会的哲学会议录中描述了这个努力," 涉及他的方法他已经 几何学方法中领悟了整个物理学。也给为什么这个天空是蓝的第一个合理解释的 Fabri 发现了毛细管弥散,使他的原因以光的弥散为基础。他应用这个微积分到这个新近发明的物质世界迅速和他应用得是第一个为伽利略的表明物体在同等时间中落下同等距离的实验提供一个使人信服原因。伽利略依次由于另一个耶苏会徒Niccolo Cabeo,S.J. 的着作首先变得对问题感兴趣。 在亚历山大下教皇他的关于伽利略情况的声明在监狱里 50 天带来了 Fabri VII,并且仅仅由利奥波德 II的干涉释放了他。他仍然在他的 Dialogi physici ( 1665 ) 授权的" de motu terrae " 中放了一章节 (" 涉及地球的运动" )。Fabri's 的摆线的具有创造才能正交鼓舞了年轻 Gottfried 莱布尼兹。Issac 牛顿宣称他首先从Honoré Fabri的着作听到了 Grimaldi's 的光衍射的教学。
资料出处: 数学家的辞典P.169
http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html
http://www.faculty.fairfield.e/jmac/sj/scientists/fabri.htm
编辑者 : 柯亿振
奥扎南(Jacques Ozanam)
出生年代: 1640~1717
国籍: 法国
着作: 字典(1690年)
数学教程(1693年)
数学与物理学游戏
生平: 奥扎南,1640年出生。1701年成为巴黎科学院院士。1717年逝世。他主要研究代数和几何学。他于1690年发表了着作“字典”,其中对‘解析’这一术语进行的解释是:用代数方法进行分析。他承认四维空间,但存在于想象空间。
资料出处: 数学家的辞典P.44
http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html
编辑者 : 吴明忠
卡尔加维(Pierre de Carcavi)
出生年代: 1600~1684
国籍: 法国
生平: Pierre de Carcavi 没有正式大学的文凭。在1632年到1636年之间,他是Toulouse议会的顾问。事实上,1632年他第一次遇到费马,当他们都是Toulouse议会的成员而且他们仍是朋友。1636年Carcavi在巴黎的Grand Conseil议会买了一间办公室。 1648年,无论如何,连续的艰苦打击